Physics Notes – 3/21/2008: Work Done by Nonconservative Forces

- Nonconservative forces change the amount of mechanical energy in a system

\[W_{\text{total}} = \Delta K \]

If there is 1 cons. and 1 noncons. force, \(W_{\text{total}} = W_c + W_{\text{nc}} \)

\[W_{\text{total}} = -\Delta U + W_{\text{nc}} = \Delta K \]

\[W_{\text{nc}} = \Delta K + \Delta U \]

If \(E = U + K \), then \(\Delta E = \Delta U + \Delta K \)

\[W_{\text{nc}} = \Delta E \]

Example 1: Deep in the forest, a 17-g leaf falls from a tree and drops straight to the ground. If its initial height was 5.3 m, and its speed on landing was 1.3 m/s, how much nonconservative work was done on the leaf?

Example 2: A 95.0-kg diver steps off a diving board and drops into the water, 3.00 m below. At some depth \(d \) below the water’s surface the diver comes to rest. If the nonconservative work done on the diver -5120 J, what is the depth, \(d \)?
Physics Notes – 3/21/2008: Work Done by Nonconservative Forces

Example 1: Deep in the forest, a 17-g leaf falls from a tree and drops straight to the ground. If its initial height was 5.3 m, and its speed on landing was 1.3 m/s, how much nonconservative work was done on the leaf?

Example 2: A 95.0-kg diver steps off a diving board and drops into the water, 3.00 m below. At some depth d below the water’s surface the diver comes to rest. If the nonconservative work done on the diver is -5120 J, what is the depth, d?